代写代考 #First fit the standard frequentist linear statistical model – cscodehelp代写

#First fit the standard frequentist linear statistical model
data(mtcars)
help(mtcars)
#creating a new dataframe with only mpg,drat,wt, and qsec as variables

Copyright By cscodehelp代写 加微信 cscodehelp

vars=names(mtcars)%in%c(“cyl”, “disp”, “hp”, “vs”,”am”,”gear”,”carb”) #variables to exclude
mtcars1=mtcars[!vars]

fit=lm(mpg~drat+wt+qsec,data=mtcars1)
summary(fit)

#Now fit the Bayesian version of the model using JAGS
require(rjags)

#covariates and response
y=mtcars1$mpg; drat=mtcars1$drat; wt=mtcars1$wt; qsec=mtcars1$qsec
n=nrow(mtcars1)

#model in BUGS language
model_string <- "model{ # Likelihood for(i in 1:n){ y[i]~dnorm(mu[i],tau) mu[i]=beta[1]+beta[2]*drat[i]+beta[3]*wt[i]+beta[4]*qsec[i] # Prior for beta for(j in 1:4){ beta[j]~dnorm(mu0,tau0) tau0=1/sigma02 # Prior for the inverse variance tau~dgamma(a, b) # Compute the variance sigma2=1/tau #hyperparameters for the betas and tau mu0=0; sigma02=1000; a=0.1; b=0.1 # list with data and hyperparameters data=list(y=y,drat=drat,wt=wt,qsec=qsec,n=n,mu0=mu0,sigma02=sigma02,a=a,b=b) #passing the model to rjags model=jags.model(textConnection(model_string),n.chains=1,data=data) update(model,100000,progress.bar="none") resthin=coda.samples(model,variable.names=c("beta","sigma2"),n.iter=500000,thin=50,progress.bar="none") autocorr.plot(resthin[[1]][,"beta[1]"]) autocorr.plot(resthin[[1]][,"beta[2]"]) autocorr.plot(resthin[[1]][,"beta[3]"]) autocorr.plot(resthin[[1]][,"beta[4]"]) autocorr.plot(resthin[[1]][,"sigma2"]) acf(resthin[[1]][,"beta[1]"],lag.max=500) acf(resthin[[1]][,"beta[2]"],lag.max=500) acf(resthin[[1]][,"beta[3]"],lag.max=500) acf(resthin[[1]][,"beta[4]"],lag.max=500) acf(resthin[[1]][,"sigma2"],lag.max=500) effectiveSize(resthin[[1]][,"beta[1]"]) effectiveSize(resthin[[1]][,"beta[2]"]) effectiveSize(resthin[[1]][,"beta[3]"]) effectiveSize(resthin[[1]][,"beta[4]"]) effectiveSize(resthin[[1]][,"sigma2"]) plot(density(resthin[[1]][,"beta[1]"])) plot(density(resthin[[1]][,"beta[2]"])) plot(density(resthin[[1]][,"beta[3]"])) plot(density(resthin[[1]][,"beta[4]"])) plot(density(resthin[[1]][,"sigma2"])) ### next section is about checks based on studentised residuals resmat=as.matrix(resthin) niterf=nrow(resmat) beta0=resmat[,1]; beta1=resmat[,2] ;beta2=resmat[,3]; beta3=resmat[,4]; sigma=sqrt(resmat[,5]) x=cbind(rep(1,n),mtcars1$drat,mtcars1$wt,mtcars1$qsec) H=x%*%solve((t(x)%*%x))%*%t(x) #fitted values fittedvalues=matrix(0,nrow=n,ncol=niterf) for(l in 1:niterf){ fittedvalues[,l]=beta0[l]*x[,1]+beta1[l]*x[,2]+beta2[l]*x[,3]+beta3[l]*x[,4] #studentised residuals studentisedred=matrix(0,nrow=n,ncol=niterf) for(l in 1:niterf){ for(i in 1:n){ studentisedred[i,l]=(y[i]-fittedvalues[i,l])/(sigma[l]*sqrt((1-diag(H)[i]))) #posterior mean of studentised residuals studentisedredm=numeric(n) for(i in 1:n){ studentisedredm[i]=mean(studentisedred[i,]) qqnorm(studentisedredm,xlim=c(-3,3),ylim=c(-3,3),lwd=2) qqline(studentisedredm,col=2,lwd=2) #checking independence of error terms plot(seq_along(studentisedredm),studentisedredm,xlab="Index",ylab="Bayesian studentised residual",ylim=c(-3,3)) #posterior mean fitted values fittedvaluesm=numeric(n) for(i in 1:n){ fittedvaluesm[i]=mean(fittedvalues[i,]) plot(fittedvaluesm,studentisedredm,xlab="Fitted value (posterior mean)",ylab="Bayesian Studentised residual (posterior mean)") #predictive checks #replicated data yrep=matrix(0,nrow=n,ncol=niterf) for(l in 1:niterf){ for(i in 1:n){ yrep[i,l]=rnorm(1,beta0[l]*x[i,1]+beta1[l]*x[i,2]+beta2[l]*x[i,3]+beta3[l]*x[i,4],sigma[l]) #statistics of interest in this case (and different from the ones included in the model) yrepmin=apply(yrep,2,min) yrepmax=apply(yrep,2,max) yrepmedian=apply(yrep,2,median) require(fBasics) yrepskewness=apply(yrep,2,skewness) yrepkurtosis=apply(yrep,2,kurtosis) hist(yrepmin,col="gray40") abline(v=min(y),col="red",lwd=2) hist(yrepmax,col="gray40") abline(v=max(y),col="red",lwd=2) hist(yrepmedian,col="gray40") abline(v=median(y),col="red",lwd=2) hist(yrepskewness,col="gray40") abline(v=skewness(y),col="red",lwd=2) hist(yrepkurtosis,col="gray40") abline(v=kurtosis(y),col="red",lwd=2) #plot some realisations of the replicated data against the density of the observed data plot(density(yrep[,1]),col="lightskyblue1",ylim=c(0,0.1)) for(i in 2:1000){ lines(density(yrep[,i]),col="lightskyblue1") lines(density(y),col="black",lwd=4) 程序代写 CS代考 加微信: cscodehelp QQ: 2235208643 Email: kyit630461@163.com

Leave a Reply

Your email address will not be published. Required fields are marked *