代写代考 TUB 2022 – cscodehelp代写

Boosting and Ensemble Learning
Klaus- ̈ller
Klaus- ̈ller Lecture at TUB 2022

Copyright By cscodehelp代写 加微信 cscodehelp

Recap: Statistical Learning setup
Klaus- ̈ller Lecture at TUB 2022

Recap: Statistical Learning setup II
Klaus- ̈ller Lecture at TUB 2022

SRM- the picture
Klaus- ̈ller Lecture at TUB 2022

SVM vs. Boosting
Klaus- ̈ller Lecture at TUB 2022

VC dimension: example
Klaus- ̈ller Lecture at TUB 2022

The Basic idea behind boosting

Ensemble Learning and Classification
Klaus- ̈ller Lecture at TUB 2022

The Adaboost Algorithm
Klaus- ̈ller Lecture at TUB 2022

Adaboost Algorithm: illustration
Klaus- ̈ller Lecture at TUB 2022

Experimental Motivation
Klaus- ̈ller Lecture at TUB 2022

Error Function of Adaboost
Klaus- ̈ller Lecture at TUB 2022

Theoretical Motivation PAC boosting

PAC Boosting – exponential convergence
Klaus- ̈ller Lecture at TUB 2022

PAC Boosting – VC dimension of combined Hypothesis
Klaus- ̈ller Lecture at TUB 2022

PAC Boosting – Digestion
Klaus- ̈ller Lecture at TUB 2022

A strange Phenomenon
Klaus- ̈ller Lecture at TUB 2022

Theoretical Motivation margin distributions

Margin Distributions – definitions
Klaus- ̈ller Lecture at TUB 2022

Margin Distributions – illustration
Klaus- ̈ller Lecture at TUB 2022

Margin Distributions – lower bounding the margin
Klaus- ̈ller Lecture at TUB 2022

Margin Distributions – Large Margin Hyperplanes
Klaus- ̈ller Lecture at TUB 2022

Margin Distributions – a bound
Klaus- ̈ller Lecture at TUB 2022

SVM vs. Boosting
Klaus- ̈ller Lecture at TUB 2022

Boosting in the limit

An error function for Adaboost
Klaus- ̈ller Lecture at TUB 2022

What happens in the long run?
Klaus- ̈ller Lecture at TUB 2022

Support Vector vs Support Patterns
Klaus- ̈ller Lecture at TUB 2022

Mathematical Programs: SVMs vs. Boosting

Mathematical Program Formulation- SVMs
Klaus- ̈ller Lecture at TUB 2022

Boosting as a Mathematical Program
Klaus- ̈ller Lecture at TUB 2022

Soft Margins
Klaus- ̈ller Lecture at TUB 2022

Hard Margin Classification
Klaus- ̈ller Lecture at TUB 2022

Adaboost with Soft Margins
Klaus- ̈ller Lecture at TUB 2022

Adaboost with Soft Margins
Klaus- ̈ller Lecture at TUB 2022

Adaboost with Soft Margins
Klaus- ̈ller Lecture at TUB 2022

Regularizing Adaboost – Reducing the Influence
Klaus- ̈ller Lecture at TUB 2022

Regularizing Adaboost
Klaus- ̈ller Lecture at TUB 2022

Benchmark Comparison
Klaus- ̈ller Lecture at TUB 2022

Experimental Results
Klaus- ̈ller Lecture at TUB 2022

Other Applications
Recently more…
Klaus- ̈ller Lecture at TUB 2022

Conclusions
Klaus- ̈ller Lecture at TUB 2022

Sources of Information
Acknowledgements to Gunnar Rätsch
Klaus- ̈ller Lecture at TUB 2022

程序代写 CS代考 加微信: cscodehelp QQ: 2235208643 Email: kyit630461@163.com

Posted in Uncategorized

Leave a Reply

Your email address will not be published. Required fields are marked *