程序代写代做代考 Java algorithm 12.key

12.key

http://people.eng.unimelb.edu.au/tobym

@tobycmurray

toby.murray@unimelb.edu.au

DMD 8.17 (Level 8, Doug McDonell Bldg)

Toby Murray

COMP90038 

Algorithms and Complexity

Lecture 12: More Divide-and-Conquer Algorithms

(with thanks to Harald Søndergaard)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Divide and Conquer
• In the last lecture we studied the archetypal divide-

and-conquer sorting algorithms: mergesort and
quicksort.

• We also introduced the powerful master theorem,
providing solutions to a large class of recurrence
relations, for free.
• allows us to quickly determine the complexity of

these divide-and-conquer algorithms

• Now we shall look at tree traversal, and then a final
example of divide-and-conquer, giving a better
solution to the closest-pair problem.

2

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Binary Trees
• An example of a binary tree, with empty subtrees

marked as ☐ 








• This tree has height 4, the empty tree having height -1

3

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Review of Linked List 

Terminology

4

2

node

pointer
(in Java: “reference”)

72 3 5X:

X is (a pointer to) the head node of the list

2Y:

“Y.val” refers to
“Y.next”
refers to

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Tree Terminology

5

root

left
subtree

right
subtree

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Tree Terminology

6

17

t:

t is (a pointer to) the root node of the tree

“t.root” refers to

33

33

…… … …

17

t:

“t.left” refers to “t.right”
refers to

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Binary Trees
• An example of a binary tree, with empty subtrees

marked as ☐ 








• This tree has height 4, the empty tree having height -1

7

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Empty Nodes

8

38

25

empty trees are
just null pointers

right subtree
is empty

null pointer

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Levels and Height

9

Level 0

Level 1

Level 2

Level 3

Level 4

So the tree has height 4 (its maximum level)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Binary Tree Concepts
• Special trees have their external nodes ☐ ︎only at

level h and h+1 for some h:

10

A full binary tree:
Each node has 0 or 2
(non-empty) children.

A complete tree: Each level
filled left to right. 


(Every level except perhaps the
last is completely filled.)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Calculating the Height
• Recursion is the natural way of calculating the height:

11

T:

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

• Input size: number n of (internal) nodes (e.g. for T n is 13)

• Number of external nodes always n+1 (e.g. for T x is 14)

• The function HEIGHT makes one tree comparison (is T null/
empty?) per node (internal and external), so altogether 2n +
1 comparisons. T:

Height Complexity

12

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Binary Tree Traversal

• Preorder traversal visits the root, then the left
subtree, and finally the right subtree.

• Inorder traversal visits the left subtree, then the
root, and finally the right subtree.

• Postorder traversal visits the left subtree, the right
subtree, and finally the root.

• Level-order traversal visits the nodes, level by
level, starting from the root.

13

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

14

Call Stack
PREORDERTRAVERSE(17)

Visit order:

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

15

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

16

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

17

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

18

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

19

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

20

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

19

PREORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

21

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

22

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

19

PREORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

23

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33

PREORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

24

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

25

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

26

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

27

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16

PREORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

28

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

PREORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

29

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

PREORDERTRAVERSE(38)

(…skipping the calls to
PREORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

30

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

31

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

PREORDERTRAVERSE(31)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

32

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

PREORDERTRAVERSE(31)

31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

33

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38

PREORDERTRAVERSE(31)

31

(…skipping the calls to
PREORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

34

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19

PREORDERTRAVERSE(16)

16 38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

35

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17

PREORDERTRAVERSE(33)

33 19 16 38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

36

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

37

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

38

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

39

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48

PREORDERTRAVERSE(11)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

40

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48

PREORDERTRAVERSE(11)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

41

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48

PREORDERTRAVERSE(11)

11

(…skipping the calls to
PREORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

42

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48 11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

43

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48 11

PREORDERTRAVERSE(14)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

44

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48 11

PREORDERTRAVERSE(14)

14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

45

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48 11

PREORDERTRAVERSE(14)

14

(…skipping the calls to
PREORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

46

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31

PREORDERTRAVERSE(48)

48 11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

47

Call Stack
PREORDERTRAVERSE(17)

Visit order: 17 33 19 16 38 31 48 11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal

48

Call Stack

Visit order: 17 33 19 16 38 31 48 11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

49

Visit order:

Call Stack
INORDERTRAVERSE(17)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

50

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

51

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

52

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)
INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

53

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

54

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

55

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)

19

INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

56

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)
INORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

57

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

58

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

59

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

60

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

61

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)
INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

62

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

63

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

64

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)

38

INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

65

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)
INORDERTRAVERSE(38)

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

66

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

67

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

68

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

69

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)
INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

70

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

71

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)

31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

72

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)

31

INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

73

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16

INORDERTRAVERSE(31)

31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

74

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33

INORDERTRAVERSE(16)

38 16 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

75

Visit order:

Call Stack
INORDERTRAVERSE(17)
INORDERTRAVERSE(33)

19 33 38 16 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

76

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

77

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

78

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

79

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

80

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)
INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

81

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

82

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

83

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)

11

INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

84

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)
INORDERTRAVERSE(11)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

85

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

86

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

87

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

88

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)
INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

89

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

90

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)

14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

91

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)

14

INORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

92

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48

INORDERTRAVERSE(14)

14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

93

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17

INORDERTRAVERSE(48)

11 48 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

94

Visit order:

Call Stack
INORDERTRAVERSE(17)

19 33 38 16 31 17 11 48 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Inorder Traversal

95

Visit order:

Call Stack

19 33 38 16 31 17 11 48 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

96

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

97

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

98

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

99

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)
POSTORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

100

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

101

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)
POSTORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

102

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

103

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)
POSTORDERTRAVERSE(19)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

104

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

105

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

106

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

107

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)
POSTORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

108

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

109

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)
POSTORDERTRAVERSE(null)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

110

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

111

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)
POSTORDERTRAVERSE(38)

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

112

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

113

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38

POSTORDERTRAVERSE(31)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

114

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38

POSTORDERTRAVERSE(31)

(…skipping the calls to
POSTORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

115

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38

POSTORDERTRAVERSE(31)

31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

116

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

117

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19

POSTORDERTRAVERSE(16)

38 31 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

118

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19 38 31 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

119

Visit order:

Call Stack
POSTORDERTRAVERSE(17)
POSTORDERTRAVERSE(33)

19 38 31 16 33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

120

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

121

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

122

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)
POSTORDERTRAVERSE(11)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

123

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)
POSTORDERTRAVERSE(11)

(…skipping the calls to
POSTORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

124

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)
POSTORDERTRAVERSE(11)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

125

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

126

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11

POSTORDERTRAVERSE(14)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

127

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11

POSTORDERTRAVERSE(14)

(…skipping the calls to
POSTORDERTRAVERSE(null)…)

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

128

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11

POSTORDERTRAVERSE(14)

14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

129

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

130

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33

POSTORDERTRAVERSE(48)

11 14 48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

131

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33 11 14 48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

132

Visit order:

Call Stack
POSTORDERTRAVERSE(17)

19 38 31 16 33 11 14 48 17

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Postorder Traversal

133

Visit order:

Call Stack

19 38 31 16 33 11 14 48 17

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Preorder Traversal 

Using a Stack
• Explicitly maintain a stack of nodes








• In an implementation, the elements placed onto the
stack would not be whole trees, but pointers to the
corresponding internal nodes

134

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

135

Queue:

Traversal order:

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

136

Queue: 17

Traversal order:

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

137

Queue:

Traversal order:

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

138

Queue:

Traversal order: 17

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

139

Queue:

Traversal order: 17

33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

140

Queue:

Traversal order: 17

33 48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

141

Queue:

Traversal order: 17

48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

142

Queue:

Traversal order: 17

48

33

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

143

Queue:

Traversal order: 17

48

33

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

144

Queue:

Traversal order: 17

48

33

19 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

145

Queue:

Traversal order: 17 33

19 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

146

Queue:

Traversal order: 17 33

19 16

48

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

147

Queue:

Traversal order: 17 33

19 16

48

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

148

Queue:

Traversal order: 17 33

19 16

48

11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

149

Queue:

Traversal order: 17 33

16

48

11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

150

Queue:

Traversal order: 17 33

16

48

11 14

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

151

Queue:

Traversal order: 17 33 48

11 14

19

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

152

Queue:

Traversal order: 17 33 48

11 14

19 16

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

153

Queue:

Traversal order: 17 33 48

11 14

19 16

38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

154

Queue:

Traversal order: 17 33 48

11 14

19 16

38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

155

Queue:

Traversal order: 17 33 48

14

19 16

38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

156

Queue:

Traversal order: 17 33 48

14

19 16

38 31

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

157

Queue:

Traversal order: 17 33 48 19 16

38 31

11

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

158

Queue:

Traversal order: 17 33 48 19 16

38 31

11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

159

Queue:

Traversal order: 17 33 48 19 16

31

11 14

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

160

Queue:

Traversal order: 17 33 48 19 16

31

11 14 38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

161

Queue:

Traversal order: 17 33 48 19 16 11 14 38

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Level-Order Traversal 

Using a Queue
• Replace the stack with a queue

162

Queue:

Traversal order: 17 33 48 19 16 11 14 38 31

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem (2D) 

Revisited (see Lecture 5)

163

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited
• In Lecture 5 we gave a brute-force algorithm for the

closest pair problem: Given n points in the Cartesian
plane, find a pair with minimal distance.

• The brute-force method had complexity Θ(n2). We can
use divide-and-conquer to do better, namely Θ(n log n).

• First, sort the points by x value and store the result in
array byX. Also sort the points by y value and store the
result in array byY.

• Now we can identify the x median, and recursively
process the set PL of points with lower x values, as well
as the set PR with higher x values.

164

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

165

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

166

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

167

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

168

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

169

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

170

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem 

Revisited

171

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem
Revisited
• The recursive calls will identify dL, the shortest distance for pairs in

PL, and dR, the shortest distance for pairs in PR.

• Let m be the x median and let d = min(dL,dR). This d is a
candidate for the smallest distance.

• But d may not be the global minimum—there could be some close
pair whose points are on opposite sides of the median line x = m.

• For candidates that may improve on d we only need to look at
those in the band m − d ≤ x ≤ m + d.

• So pick out, from array byY, each point p with x-coordinate
between m−d and m+d, and keep these in array S.

• For each point in S, consider just its “close” neighbours in S.

172

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

Closest Pair Problem
Revisited
• The following calculates the smallest distance

and leaves the (square of the) result in minsq.

• It can be shown that the while loop can
execute at most 5 times for each i value—
see diagram.

173

Copyright University of Melbourne 2016, provided under Creative Commons Attribution License

You’re Learning Heaps!

• Next up: Priority queues, heaps and heapsort.

174

Leave a Reply

Your email address will not be published. Required fields are marked *