程序代写代做代考 Bayesian AI 规划 (AI Planning)
规划 (AI Planning)
University of Science and Technology of China
April 16, 2014
(USTC) AI Planning April 16, 2014 1 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 2 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 3 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 4 / 43
背景
规划(智能规划,AI Planning)是人工智能一个重要领域,起源
于 60年代
Planning in AI is decision making about the actions to be taken
规划器分为:
Domain-specific: 一般针对特定领域专门设计,高效,已大量应用
Domain-independent: 通用的求解器,效率相对不高,目前还很难实
际应用。但仍然有重要意义:
领域无关是对规划问题共性的研究,其成果可以用来提高领域相关规
划器的效率;
研究一般规划行为所反映的理性行为;
便宜的规划器(针对领域定制,一般需花费更多);
研究和设计自治智能体(如,智能机器人)就需要领域无关
Configurable: 在领域无关基础上,根据领域特点增加一些控制信息
在 AI领域,规划 (Planning)一般指 Domain-independent
和 Configurable Planning
(USTC) AI Planning April 16, 2014 5 / 43
智能规划
规划领域主要两个工作:如何
方便的(紧凑并且方便求解)
表达和如何高效求解(搜索)
表示:状态、行动
状态:(动态)系统在某
时刻的情况,问题的状态
描述
初始状态、目标状态
行动:状态空间上的部分
映射,对状态描述进行变
换的一组操作
求解:计算(搜索)出从初
始状态变化到目标状态的一
个操作序列
状态空间搜索,偏序规
划,规划图,Planning as
{SAT, CSP, ILP, . . . },等
(USTC) AI Planning April 16, 2014 6 / 43
经典规划基本假设
规划问题非常复杂,为简化问题而提出一些简化的假设(经典规划
基本假设):
(A0) Finite system: finitely many states, action, events
(A1) Fully observable: always know current state
(A2) Deterministic: each action has only one outcome.
(A3) Static (no exogenous events): no changes but the controller’s actions
(A4) Attainment goals: a set of goal states
(A5) Sequential plans: a plan is a linearly ordered sequence
(A6) Implicit time: no time durations
(A7) Off-line planning: planner doesn’t know the execution status
经典规划的任务,简单说就是:Computing paths from an initial state
to a goal state in the transition graph.
已知 transition graph,用 Dinkstra算法(时间复杂度为 O(n log n))
但状态空间一般非常大 (109, 1012, 1015, . . . ),所以无法构造出整
个 transition graph
规划算法要避免构造出整个 transition graph
(USTC) AI Planning April 16, 2014 7 / 43
经典规划
经典规划只考虑确定的、静态的、有限的、完全可观察的、离散环
境的、目标受限和忽略时间的状态转移系统
经典规划的主要问题包括:
如何在不显示枚举的情况下,表达状态和动作: compact and easy
searched
如何有效的进行解的搜索
即使在受限条件下,规划问题的求解仍然是非常困难的,奢求用经
典规划技术来解决实际规划问题是不现实的
需要用一种通用的表达方式,compact表达状态和动作,并且便于
搜索求解,一般的思路是:
用 features来表达单个状态。状态为 features特定值的集合
用 operators来计算状态转移。operators为 features之间的转换关系
不需显示表达出所有状态,只给出初始状态,然后通过 operators计
算出需要的状态
(USTC) AI Planning April 16, 2014 8 / 43
经典规划的集合论表达 (Set-Theoretic Representation)
用有限的命题符号集 (L)来表达状态转移系统:
S ⊆ 2L,状态 s为 L的子集,命题的集合,表示在 s上真的命题
action是三元组 ⟨precond, effect−, effect+⟩
S的性质:对于任意状态 s和可应用于 s的行动 a,集合
(s − effect−(a)) ∪ effect+(a) ∈ S
如果 a可应用于 s,则状态转移函数为
𝛾(s, a) = (s − effect−(a)) ∪ effect+(a),否则无定义
规划问题是在状态转移系统的基础上增加初始状态和目标状态集
s0 ∈ S
g ⊆ L,目标状态集合为 Sg = {s ∈ S | g ⊆ s}
规划是一个动作序列 𝜋 = ⟨a1, . . . , ak⟩,如果 g ⊆ 𝛾(s0, 𝜋),则规划 𝜋
是此规划问题的一个解
并不是每一个状态转移系统都可以用集合论表达,但可以构造一个
与其等价的系统,而此系统可以用集合论表达
(USTC) AI Planning April 16, 2014 9 / 43
经典规划的经典表达 (Classical Representation)
经典表达是对集合论表达的推广,使用一阶逻辑符号,用公式来表
达状态集和行动,通过语义解释来确定具体的状态和行动
用一阶逻辑语言(有限多谓词,变元,常元,没有函数符号)来描
述系统。一个状态是一个 grounded atoms集合。谓词又分为状态谓
词 (fluent)和刚性关系 (rigid relation),前者是状态集的函数,后者不
随状态变化而变化
规划操作是一个三元组 o = (name(o), precond(o), effects(o)),其中:
name(o),操作的名字,形如 n(x1, . . . , xk)
precond(o)和 effects(o)分别是 o的前提和效果,都是文字集。刚性关
系不能出现在任何操作 o的效果中。action是 ground instance of an
operator
例如:move(r, l,m)表示机器人 r从位置 l移动到位置 m:
precond: adjacent(l,m), at(r, l), ¬occupied(m)
effect: at(r,m), occupied(m), ¬occupied(l), ¬at(r, l)
经典表达 grounding后与集合论表达等价,不过 grounding结果可能
指数增大
状态变量表达 (State-Variable Representation):
状态为向量值,动作为函数映射。经典表达与状态变量方法在表达
能力上是等价的
(USTC) AI Planning April 16, 2014 10 / 43
发展历史
自动规划最初受自动推理证明很大的影响,用 Situation Calculus的
方式对初始状态、目标状态和行动做公理化描述,使用归结定理证
明来构造求解
然而,这种方式遇到框架问题的困难,从而引入对经典规划的描述
问题,其目的之一就是为框架问题提供一个简单的解法:
STRIPS假设:在效果中没提及的每个文字保持不变
STRIPS就是这方面早期的工作。这里介绍的经典表达和 STRIPS
有同样的表达能力(STRIPS不同与自动定理证明不同的是,将解
的搜索和对系统的逻辑描述分离了)
ADL权衡了一阶表达能力和推理的复杂性,之后扩展的 PDDL,为
规划问题的标准描述语言
PDDL (The Planning Domain Definition Language)是由 IPC
(International Planning Competition两年一届)定义的标准语言。已
有一大批基于 PDDL的通用规划器
STRIPS或 PDDL方式与 Situation Calculus方式都可以刻画动态系
统,两者在规划、预测方面的效果相同,但如果需要更复杂的推理
(如诊断),则只能使用 Situation Calculus
(USTC) AI Planning April 16, 2014 11 / 43
经典规划的复杂性
经典规划存在解 (PLAN-EXT),存在固定长度解 (PLAN-LEN)问题的计算复杂性
(USTC) AI Planning April 16, 2014 12 / 43
Example: blocks world
初始状态:
ontable(A)∧ on(C,A)∧ ontable(B)∧ clear(B)∧ clear(C)∧ handempty
目标:on(A,B) ∧ on(B,C)
(USTC) AI Planning April 16, 2014 13 / 43
Example: blocks world (con’t)
操作:
(USTC) AI Planning April 16, 2014 14 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 15 / 43
状态空间搜索方式
在状态转移图中搜索从初始状态到目标状态的一条路径
前向搜索 (Forward Search):从初始状态出发向前搜索
后向搜索 (Backward Search):从目标状态向后搜索
启发式搜索:利用启发式函数(例如,估计从状态到目标的距离)
进行前向或后向搜索
(USTC) AI Planning April 16, 2014 16 / 43
前进规划 (progression)
从初始状态开始,考虑所有可行的行动,进行深度或广度搜
索,𝛾(s, a)
可靠并完全
(USTC) AI Planning April 16, 2014 17 / 43
回归规划 (regression)
从目标出发,将当前目标还原为回归子目标,𝛾−(g, a)
与 Forward相比,一般有较小的分支数
An action a is relevant for a goal g if
g ∩ effects+(a) ̸= ∅
g+ ∩ effects−(a) = ∅ and g− ∩ effects+(a) = ∅
(USTC) AI Planning April 16, 2014 18 / 43
SPRIPS规划
类似 backward,每次选择一个相关的 action,但只将 action
的 precondition作为下一步迭代的目标
当状态满足 precondition后执行此动作,并不再回溯
STRIPS是不完备的
算法过程:return a sequence of actions that transforms s into g
1 Calculate the difference set d = g − s
2 If d is empty, return an empty plan
3 Choose action a whose add-list has most formulas contained in g
4 p′ = STRIPS(s, precondition of a)
5 Compute the new state s′ by applying p′ and a to s
6 p = STRIPS(s′, g)
7 return p′; a; p
(USTC) AI Planning April 16, 2014 19 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 20 / 43
规划空间搜索
状态空间是最直接的搜索方式,规划是状态转移图中的一条路径,
规划求解自然也就是状态空间上的搜索问题
但很多时候,状态空间上的搜索是在以不同的顺序不断说明一组行
动不可行
因此提出规划空间:节点为局部具体化的规划,弧为规划的求精操
作(refinement operation)
求解操作基于极小承诺原则 (least commitment principle): don’t
commit to orderings, instantiations, etc., until necessary
PSP (Plan-Space Planning)算法:找到 plan的缺陷,选择一个缺
陷,找到解决缺陷的所有方法,选择一个方法,按此方法对 plan求
精。PSP算法是可靠完全的
(USTC) AI Planning April 16, 2014 21 / 43
偏序规划 (Partial-Order Planning)
规划问题:给定 s, g,要找到行动序列 a1, . . . , an 使得:
1 a1 在 s上可执行
2 执行 ai 后 ai+1 可执行
3 执行 an 后 g为真
前行,回归规划都是在过程中生成“部分计划”,满足 (2),但只
满足 (1)或 (3)之一;而偏序规划在过程中满足 (1)和 (3),可以不
满足 (2)
POP算法:以伪计划 P = (s, e)为起点,在保持 P为一个 POP部分
计划的前提下,不断向 P中添加新的因果链,直至得到一个 POP
计划
因果链形如:ap
Q−→ ac, Q ∈ eff (ap) ∩ pre(ac)是 ap对 ac前提条件的
贡献
POP算法,类似 PSP,不过对两类不同的缺陷(子目标和威胁)采
取不同的处理方式。先处理子目标,再处理相应的威胁。
(USTC) AI Planning April 16, 2014 22 / 43
偏序规划
(USTC) AI Planning April 16, 2014 23 / 43
状态空间和规划空间规划的比较
状态空间有限,而规划空间无限。但规划空间规划通常有较小的搜
索空间
状态空间有显式的中间的状态,而规划空间中没有,没有明确的状
态的概念。如果状态的概念清晰,可以有效利用领域知识和控制知
识
规划空间,将对动作的选择和其顺序分离
(USTC) AI Planning April 16, 2014 24 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 25 / 43
规划图 (Planning Graph)
Planning Graph是对 possible plans约束的描述。“If valid plan exists,
it’s a subgraph of the planning graph.”,并且可以在多项式时间构造
规划图是有向分层图:
两种节点:Proposition P, Action A
三种边:Precondition: P → A, Add: A → P, Delete: A → P
两层:Proposition和 Action
Action level:前提条件被上一层满足的 actions + no-op actions (for
frame problem)
(USTC) AI Planning April 16, 2014 26 / 43
规划图方法
规划图方法是两个阶段交替执行:图扩展(graph expansion)阶段
和解提取(solution extraction)阶段
图扩展阶:正向扩展规划图直到目标状态的所有命题都出现为止
解提取阶段:反向搜索规划图以求出规划解
规划图的构造过程:
1 用初始状态真的所有文字构造 P1 层;
2 用前提被满足的行动构造 A1 层;
3 再根据 A1 层的 effects构造 P2 层(包括 no-ops,惯性);
4 ……
同时还要维护一组互斥关系 (Mutual Exclusion relations),来删
除 incompatible propositions and actions:
Two actions (or literals) are mutually exclusive at some stage if no valid
plan could contain both.
Two actions are mutex if:
Interference: one clobbers others’ effect or precondition.
Competing needs: mutex preconditions.
Two propositions are mutex if: All ways of achieving them are mutex.
(USTC) AI Planning April 16, 2014 27 / 43
规划图方法 (con’t)
规划图的特点:
Propositions and actions monotonically increase
Proposition mutex and action mutex relationships monotonically decrease
After some time k all levels are identical
规划图的构造时间是规划问题大小的多项式倍
规划解 (valid plan)是规划图的一个子图,满足如下条件:
Actions at the same level don’t interfere;
Each action’s preconditions are made true by the plan;
Goals are satisfied.
规划图技术的算法:
1 先构造规划图 (PG)直到所有的目标都可达且 not mutex (If PG levels
off first, fail),
2 Search the PG for a valid plan,
3 If not found, add a level to the PG and try again.
(USTC) AI Planning April 16, 2014 28 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 29 / 43
Planning as {SAT, CSP, ILP, . . . }
Grounding以后的规划问题复杂度是 PSPACE-complete,因为规划
本身的长度有可能是指数的
只在有限长度 k内计算 plan,则复杂度为 NP-complete
所以将规划问题翻译为其他解决 NP-hard的经典问题,Planning as:
SAT: Propositional Satisfiability
Situation Calculus方式。将规划问题用命题逻辑方式表达,使得每
个 model对应一个 plan
结合规划图和 SAT。先构造 k层的规划图,将此图转化为 SAT问题,
再用 SAT求解器来计算里面的 plan。比较成功,代表有 Black-Box
(1998年规划竞赛优秀者之一),SatPlan (2004, 2006年冠军)
CSP: Constraint Satisfaction
将规划问题翻译为一个 CSP问题,用其求解器求解。也可以通过规划
图来翻译 GP-CSP。CSP encodings can be more compact.
将 CSP技术应用到规划中
ILP: Integer Linear Programming
(USTC) AI Planning April 16, 2014 30 / 43
小结
规划的核心问题是表示和求解(搜索)
经典规划用命题(或一阶)表示状态和行动
状态空间规划一般分为前进(progression)和回归(regression)规
划
偏序规划为规划空间规划
规划图可以多项式时间构造出来,规划解是规划图的一个子图。规
划图算法就是反复扩展规划图和尝试提取解的过程
一般规划问题(Grounding以后)如果不限定规划长度,则计算复
杂性为 PSPACE-complete;若限定长度,则为 NP-complete,可以
等价翻译为其他解决 NP-hard的经典问题,如 SAT, CSP, ILP,等
(USTC) AI Planning April 16, 2014 31 / 43
Outline
1 经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, . . . }
2 现实世界的规划与行动
(USTC) AI Planning April 16, 2014 32 / 43
经典规划的扩展
(USTC) AI Planning April 16, 2014 33 / 43
分层任务网络规划 (Hierarchical Task Network (HTN)
Planning)
分层任务网规划和经典规划类似,但增加一个方法集合 (method),
告诉系统,如何将一类任务分解为更小的子任务(可能有偏序约
束),规划过程就是递归的将那些非原子任务分解到原子任务。
HTN规划基本过程:
1 Input a planning problem P
2 If P contains only primitive tasks, then resolve the conflicts and return the
result. If the conflicts cannot be resolved, return failure
3 Choose a non-primitive task t in P
4 Choose an expansion for t
5 Replace t with the expansion
6 Find interactions among tasks in P and suggest ways to handle them.
Choose one
7 Goto 2
因为 HTN可以方便的根据领域知识加入如何分解 task的方
法,HTN应用很广,而且效果很好,在规划大赛中总是前几名
(USTC) AI Planning April 16, 2014 34 / 43
HTN Examples
(USTC) AI Planning April 16, 2014 35 / 43
不确定性领域中进行规划 (Planning under Uncertainty)
经典规划有如下三个限制:
确定性 (determinism),但现实情况更多是不确定的:
由于信息的不完全,我们不能确定具体在哪个状态。Uncertainty about
the state of the world.
行动的结果可能是不确定的。Uncertain effects for actions.
在执行决策的过程中,外部事件可能改换世界。External events.
完全可观察性 (full observability),但实际情况更多的是部分可见
可达性目标 (reachability goals),由于动作结果的不确定和可能的执
行失败,目标也相应扩展的更灵活,主要有两种:
效用函数,规划求解的任务是使得效用函数的值最大化
用时态逻辑公式表达目标,规划求解的任务是使得,规划中行动令此
时态公式为真
(USTC) AI Planning April 16, 2014 36 / 43
Planning under Uncertainty (con’t)
由于不确定性,规划的执行可能对应于多条不同的执行路径,需要
规划算法能高效的分析所有动作各种可能的执行结果。可以有如下
方式:
Re-planning: make a plan assuming nothing bad will happen, monitor for
problems during execution, build a new plan if a problem is found, either
re-plan to the goal state or try to patch the existing plan.
Conditional planning: deal with contingencies at planning time before
they occur, every possible contingency is covered in the policy.
两种方式,前者没办法未雨绸缪,后者又考虑过甚(不可能真正处
理完所有的可能),需要平衡
用概率来表达 uncertainty能实现较好的平衡,Probabilistic planning:
Plan ahead for likely contingencies that may need steps taken before they
occur.
(USTC) AI Planning April 16, 2014 37 / 43
Planning under Uncertainty (con’t)
使用MDP/POMDP可以数学的刻画不确定性条件下的规划规划,
相关研究是持续多年的热点
对于使用MDP/POMDP也有不同声音:
MDP需要考虑state space explosion问题
require structured representations, exploit regularities in probabilities,
rewards. 而 AI的技术一般更natural, concise (STRIPS, Bayesian
networks)
require structured computation, exploit regularities in policies, value
functions, can aid in approximation.
(USTC) AI Planning April 16, 2014 38 / 43
非确定规划 (Nondeterministic Planning)
根据规划结果的质量可以有如下分类:
weak plan: 某种执行方式可能达到目标
strong cyclic plan: 最终都有可能达到终止状态,且都为目标状态
strong plan: 是strong cyclic plan,且没有cycles
conformant plan: 是strong plan,且没有观察
在不同的要求下,非确定规划问题又可以分类为:
Strong nondeterministic planning with full observability:
由于有 full observability,所以可以用 memoryless strategy 𝜋 : S → O.
具体算法有两种:1. 看作是 AND-OR search. 2. Dynamic programming
(backward).
Conformant planning: planning without observability,
EXPSPACE-complete
plans are sequences of actions
不知道具体的 state,用 belief state。具体的算法也只在 belief state上处
理。但 belief state的空间非常大
Nondeterministic planning with partial observability,有三种方法:
Reduction to full observability by viewing belief states as states.
Forward search in AND/OR trees.
Dynamic-programming style backward construction of solvable belief states,
starting from goal belief states.
(USTC) AI Planning April 16, 2014 39 / 43
The Belief Space: An Example
(USTC) AI Planning April 16, 2014 40 / 43
概率规划(Probabilistic Planning)
如果将不确定信息用概率的方式表达出来,就是 Probabilistic
planning
PDDL也已扩展出PPDDL (Probabilistic PDDL)用概率表达不确定性
(2004年)
可以直接使用MDP/POMDP方法,也可以使用其他方法,
如Planning based on Markov Decision Processes
将规划问题表示称为一个优化问题来解决
(USTC) AI Planning April 16, 2014 41 / 43
机器人上的规划 (Planning in Robotics)
机器人涉及的规划问题:
Task planning
Path and motion planning,包括:Navigation planning, Manipulation
planning
本质上是在参数空间中,找一条路径
Perception planning
经典规划框架对于机器人应用来说:too hard and too easy
too hard: it is intractable;
too easy: action sequences are not adequate as a representation of a real
robot’s program.
(USTC) AI Planning April 16, 2014 42 / 43
小结
分层任务网络(HTN)规划可以方便的根据领域知识加入如何分解
任务的方法,从而可以解决实际问题
经典规划算法假设有完备的和正确的信息、确定性的和完全可观察
的环境,实际问题通常违反这些假设
MDP/POMDP为不确定规划问题采用概率手段给出了统一的数学描
述框架
经典规划框架对机器人应用来说:too hard and too easy
(USTC) AI Planning April 16, 2014 43 / 43
经典规划 (Classical Planning)
规划问题
状态空间规划 (State-Space Planning)
规划空间规划 (Plan-Space Planning)
规划图技术 (Planning-Graph Techniques)
Planning as {SAT, CSP, ILP, �}
现实世界的规划与行动